Autumn Scheme of Learning

Year 3

\#MathsEveryoneCan

 2020-21
New for 2020/21

2020 will go down in history. The world has changed for all of us.

We want to do as much as we can to support children, teachers, parents and carers in these very uncertain times.

We have amended our schemes for 2020/21 to:
\star highlight key teaching points
\star recap essential content that children may have forgotten
\star flag any content that you might not have covered during the school closures period.

We hope these changes will add further value to the schemes and save you time.

Lesson-by-lesson overviews

We've always been reluctant to produce lesson-bylesson overviews as every class is individual and has different needs. However, many of you have said that if blended learning becomes a key feature of school life next year, a weekly plan with linked content and videos could be really useful.

As always, we've listened! We've now produced a complete lesson-by-lesson overview for Y1 to Y9 that schools can use or adapt as they choose. Each lesson will be linked to a free-to-use home learning video, and for premium subscribers, a worksheet. This means that you can easily assign work to your class, whether they are working at home or in school.

Inevitably, this lesson-by-lesson structure won't suit everyone, but if it works for you, then please do make use of this resource as much as you wish.

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of opportunities to build reasoning and problem solving elements into the curriculum.

For more guidance on teaching for mastery, visit the NCETM website:

https://www.ncetm.org.uk/resources/47230

Concrete - Pictorial - Abstract

We believe that all children, when introduced to a new concept, should have the opportunity to build competency by taking this approach.

Concrete - children should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial - alongside this children should use pictorial representations. These representations can then be used to help reason and solve problems.

Abstract - both concrete and pictorial representations should support children's understanding of abstract methods.

Need some CPD to develop this approach? Visit www.whiterosemaths.com for find a course right for you.

Supporting resources

NEW for 2019-20!
We have produced supporting resources for every small step from Year 1 to Year 11.

The worksheets are provided in three different formats:

- Write on worksheet - ideal for children to use the ready made models, images and stem sentences.
- Display version - great for schools who want to cut down on photocopying.
- PowerPoint version - one question per slide. Perfect for whole class teaching or mixing questions to make your own bespoke lesson.

For more information visit our online training and resources centre resources.whiterosemaths.com or email us directly at support@whiterosemaths.com

White

Notes and Guidance

Meet the Characters

Children love to learn with characters and our team within the scheme will be sure to get them talking and reasoning about mathematical concepts and ideas. Who's your favourite?

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Number: Place Value			Number: Addition and Subtraction					Number: Multiplication and Division			
은 응	Number: Multiplication and Division				Statistics		Measurement: Length and Perimeter			umber: Fractions		
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{5} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$		er: Frac	ons	Measurement: Time			Geometry: Properties of Shape		Measurement: Mass and Capacity			

White
 Autumn - Block 1
 R@se
 Maths Place Value

Overview

Small Steps

Notes for 2020/21

Represent numbers to 100
Tens and ones using addition
Hundreds
Represent numbers to 1,000
100s, 10 s and 1s (1)
100s, 10 s and 1s (2)
Number line to 1,000
Find $1,10,100$ more or less than a given number
Compare objects to 1,000
Compare numbers to 1,000
Order numbers
Count in 50 s

Children should already have some understanding of tens and ones from Y 2 , however it may be useful to recap this content before exploring hundreds.

You may want to ensure that you use plenty of examples of numbers within 100 including number lines to 100 before moving on to the number line to 1,000

Represent Numbers to 100

Notes and Guidance

Children need to be able to represent numbers to 100 using a range of concrete materials, such as bead strings, straws, Base 10 equipment etc.

Children should also be able to state how a number is made up. For example, they can express 42 as 4 tens and 2 ones or as 42 ones.

Mathematical Talk

How have the beads been grouped? How does this help you count?

Can you show me the tens/ones in the number?
Which resource do you prefer to use for larger numbers? Which is quickest? Which would take a long time?

Varied Fluency

Here is part of a bead string.

$$
-00000000000000000-
$$

Complete the sentences.
There are \qquad tens and \qquad ones.
The number is \qquad -.
Represent 45 on a bead string and complete the same sentence stems.
\square Match the number to the correct representation.

Represent 67 in three different ways.

Represent Numbers to 100

Reasoning and Problem Solving

How many two digit numbers can you $70,20,72,27$ make using the digit cards?

What is the largest number?
Prove it by using concrete resources.
What is the smallest number?
Prove it by using concrete resources.
Why can't the 0 be used as a tens number?

The largest
number is 72

The smallest number is 20

Because it would make a 1 digit number.

Year 2| Autumn Term | Week 1 to 3 - Number: Place Value

Tens and Ones (2)

Notes and Guidance

Children continue to use a part-whole model to explore how tens and ones can be partitioned and recombined to make a total.
Children will see numbers partitioned in different ways. For example, 39 written as $20+19$
This small step will focus on using the addition symbol to express numbers to 100 . For example, 73 can be written as $70+3=73$

Mathematical Talk

What clues are there in the calculations? Can we look at the tens number or the ones number to help us?

What number completes the part-whole model?
What is the same/different about the calculations?
What are the key bits of information? Can you draw a diagram to help you?

Varied Fluency

\square Match the number sentence to the correct number.

404148139
\square Complete the part-whole model and write four number sentences to match.

\qquad $+$ \qquad = \qquad
\qquad
\qquad
\qquad

$$
+
$$

\qquad
\qquad
\qquad

$$
=
$$

\qquad $+$

Dora has 20 sweets and Amir has 15 sweets. Represent the total number of sweets:

- With concrete resources.
- In a part-whole model.
- As a number sentence.

Tens and Ones (2)

Reasoning and Problem Solving

Hundreds

Notes and Guidance

Children build on their understanding of tens and link this to 100
This is the first time they explore 100 explicitly. It is crucial children understand that ten tens make 100 and a hundred ones make 100
They use a variety of concrete equipment to see this relationship. Once children understand the concept of 100, they will count objects and numbers in multiples of 100 up to 1,000

Mathematical Talk

How many tens have you made? How else can we say this?
What do these digits represent?
How many ones have you made? How else can you say this?
If we continue counting in tens, what do we say after 100 ?
What numbers wouldn't we say?

How many sweets are there altogether? Write your answer in numerals and words.
\square Complete the number tracks.

Varied Fluency

Use bundles of straws in tens, bead strings and Base 10 to explore how many tens make a hundred. Children use the equipment to count up and down in tens to make 100
There are 3 tens this is thirty.
There are \qquad this is \qquad .
There are \qquad tens in one hundred.

There are 100 sweets in each jar.

Hundreds

Reasoning and Problem Solving

True or False?

If I count in 100s from zero, all of the numbers will be even.
Convince me.

Sort these statements into always, sometimes or never.

- When counting in hundreds, the ones column changes.
- When counting in hundreds, the hundreds column changes.
- To count in hundreds we use 3-digit numbers.

```
True, because if
you start with zero
and add 100 you
get an even
number, and you
are adding another
even so the
number will
always be even.
```

- Never
- Always
- Sometimes

Whitney thinks the place value grid is Whitney is showing the number eight.

Hundreds	Tens	Ones
$\bigcirc \bigcirc \bigcirc$		
$\bigcirc \bigcirc$		
$\bigcirc \bigcirc \bigcirc$		

Do you agree? Explain why.
Using all of the counters, what is the smallest number you can make?

What other numbers could you make?

incorrect because

there are eight
counters in the
hundreds column
so they represent
eight hundreds.
The number is
800
The smallest number that can
be made is 8

Other possible numbers include:
80
170
350
etc.

Numbers to 1,000

Notes and Guidance

In this small step, children will primarily use Base 10 to become familiar with any number up to 1,000

Using Base 10 will emphasise to children that hundreds are bigger than tens and tens are bigger than ones.

Children need to see numbers with zeros in different columns, and show them with concrete and pictorial representations.

Mathematical Talk

Does it matter which order you build the number in?
Can you have more than 9 of the same type of number e.g. 11 tens?

Can you create a part-whole model using or drawing Base 10 in each circle?

Varied Fluency

Write down the number represented with Base 10 in each case.

Use Base 10 to represent the numbers.
700
120
407
999
Mo is drawing numbers. Can you complete them for him?

246	390	706
$\square / / / /$	$\square / / /$	$\square \square \square$

Numbers to 1,000

Reasoning and Problem Solving

Teddy has used Base 10 to represent the number 420. He has covered some of them up.	110 is the missing amount. Possible ways: 1 hundred and 1 ten 11 tens 110 ones 10 10 tens and 10 ones 50 ones and 6 tens etc.
Work out the amount he has covered up.	
How many different ways can you make	
the missing amount using Base 10?	

Which child has made the number 315 ?

Explain how you know.

Dora and Mo have both made the number 315, but represented it differently.

3 hundreds, 1 ten and 5 ones is the same as 2 hundreds, 10 tens and 15 ones.

Year 3| Autumn Term | Week 1 to 3 - Number: Place Value

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1s (1)

Notes and Guidance

Children should understand that a 3-digit number is made up of $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s .

They read numbers shown in different representations on a place value grid, and write them in numerals.

They should be able to represent different 3-digit numbers in various ways such as Base 10 or numerals.

Mathematical Talk

What is the value of the number shown on the place value chart?

Why is it important to put the values into the correct column on the place value chart?

How many more are needed to complete the place value chart?

Can you make your own numbers using Base 10? Ask a friend to tell you what number you have made.

Varied Fluency

What is the value of the number represented in the place value chart?

Hundreds	Tens	Ones

Write your answer in numerals and in words.
\square Complete this place value chart so that it shows the number 354

Hundreds	Tens	Ones

Represent the number using a part-whole model.
How many different ways can you make the number 452? Can you write each way in expanded form? (e.g. $400+50+2$)

Compare your answer with a partner.

100 s , 10s and 1s (1)

Reasoning and Problem Solving

Is Eva correct? Explain your reasoning.
What do you notice about the number shown?

Possible answers:
I disagree because there are six hundreds, four tens and seven ones so the number is 647.

I notice that 647 and 467 have the same digits but in a different order so the digits have different values.

5

 5

The numbers that can be made are:

- 503
- 530
- 305
- 350
- (0)35
- (0)53

Use the place value grid to help.

Compare your answers with a partner.

Year 3| Autumn Term | Week 1 to 3 - Number: Place Value

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s (2)

Notes and Guidance

Children use place value counters to represent different numbers and understand how a number is made.

Their work with Base 10 should help them understand that the hundreds counter is worth more than the tens counter and the tens counter is worth more than the ones counter.

Mathematical Talk

What is the same and what is different about Base 10 and place value counters?
Why do we not call this number 300506?
What number would be shown if $1 / 10 / 100$ was added?
Why is it important to put the values into the correct column on the place value grid?

What do we need to do if there is a zero in the number we are representing?

$$
615
$$

208
37
\square Use <, > or = to make the statement correct.

$100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s (2)

Reasoning and Problem Solving

Do you agree? Explain your answer.

She thinks you need to have at least one counter in each column.

Who is correct? Explain your reasoning.

Dora is correct because there are six counters in the hundreds column, none in the tens column and seven in the ones column.

If it was 670 there would be seven counters in the tens column and none in the ones column.

Number Line to 1,000

Notes and Guidance

Children estimate, work out and write numbers on a number line.

Number lines should be shown with or without start and end numbers, and with numbers already placed on it.

Children may still need Base 10 and/or place values to work with as they develop their understanding of the number line.

Mathematical Talk

What is the value of each interval on the number line? Which side of the number line did you start from? Why? When estimating where a number should be placed, what facts can help you?
Can you draw a number line where 600 is the starting number, and 650 is half way along?
What do you know about the number that A is representing? A is more/less than \qquad -
What value can A definitely not be? How do you know?

Varied Fluency

Draw an arrow to show the number 800

Draw an arrow to show the number 560

Which letter is closest to 250 ?

Estimate the value of A .

Number Line to 1,000

Reasoning and Problem Solving

If the arrow is pointing to 780, what could the start and end numbers be?	Example answers: Find three different ways and explain your reasoning.	Start 0 and end 1,000 because 500 would be in the middle and 780 would be further along than 500

Year 3| Autumn Term | Week 1 to 3 - Number: Place Value

1,10,100 More or Less

Notes and Guidance

Building on children's learning in Year 2 where they explored finding one more/less, children now move onto finding 10 and 100 more or less than a given number.

Show children that they can represent their answer in a variety of different ways. For example, as numerals or words, or with concrete manipulatives.

Mathematical Talk

What is 10 more than/less than \qquad ?

What is 100 more than/less than \qquad ?

Which column changes? Can more than one column change?
What happens when I subtract 10 from 209?
Why is this more difficult?

Varied Fluency

Put the correct number in each box.

Number

10 more

Show ten more and ten less than the following numbers using Base 10 and place value counters.
$550 \quad 724$
\square Complete the table.

100 less	Number	100 more
		$\boxed{\square}$

1,10, 100 More or Less

Reasoning and Problem Solving

10 more than my number is the same as 100 less than 320	The number described is 210
What is my number?	than 320 is 220,
Explain how you know.	is 10 more than the original
Write your own similar problem to describe the original number.	number.
I think of a number, add ten, subtract one hundred and then add one.	The start number was 345 because one less than 256
My answer is 256	is 255 , one hundred more
What number did I start with?	than 255 is 355 and ten less than
Explain how you know.	355 is 345
What can you do to check?	To check I can follow the steps back to get 256

What number could it have been?

Compare Objects

Notes and Guidance

Children use objects to represent numbers to 1,000 When given two numbers represented by objects, they use comparative language and symbols to determine which is greatest/smallest. Children can make the numbers using concrete manipulative and draw them pictorially. Use stem sentences to ensure the correct vocabulary is being used e.g. \qquad is greater than \qquad _.

Mathematical Talk

How do you know which number is greater?
Do you start counting hundreds, tens or ones first? Why?
What strategy did you use to compare the two numbers? Is this the same or different to your partner?

Are the Base 10 and place value counters showing the same amount? How do you know?

Is there only one answer?

Varied Fluency

Represent and compare the numbers using place value counters.

100 s	10 s	1 s

$$
452
$$

Use $<,>$ or $=$ to make the statements correct.

Draw objects to make the statement true.

Compare Objects

Reasoning and Problem Solving

Explain why.

How else can you represent the number?

True or False?	The image is not correct because the number 244 is represented on both sides of the inequality symbol. An equal sign should have been used.
The number on	
the left must be	
made larger or the	
number on the	
right must be	
made smaller, to	
make this true.	

Compare Numbers

Notes and Guidance

Varied Fluency

Children compare numbers presented as numerals rather than objects.
They need to be encouraged to use previous learning to choose an efficient method to compare the numbers. For example, children may choose to place the numbers on a number line, make them using concrete manipulatives or draw them in a place value chart to compare.

Mathematical Talk

What strategy did you use to compare the numbers?
What materials would be useful to help you compare the numbers?

How do you know which number is the smallest /greatest?
Which column do you start comparing from? Why?

$$
600+70+4>600+\ldots+4
$$

Two hundred and five < \qquad
Can you find more than one way to complete the statements?
Use $<,>$ or $=$ to make the statements correct.

Compare Numbers

Reasoning and Problem Solving

Order Numbers

Notes and Guidance

Varied Fluency

Children explore ordering a set of numbers from smallest to greatest and greatest to smallest. They need to be able to explain their reasoning throughout. They could still use Base 10 or other concrete materials to help them to make decisions about ordering.

At this point, children are introduced to the words ascending and descending.

Mathematical Talk

How do you know you have created the greatest/smallest number?

What number is being represented by the place value counters/Base 10?

What does the word ascending/descending mean?
Can you find more than one way to order your numbers?

Here are three digit cards.

What is the greatest number you can make?
What is the smallest number you can make?
Use the symbols $<,>$ or $=$ to make the statement correct.

\square Here is a list of numbers.

$$
\text { 312, 321, 123, 132, 213, } 231
$$

Place the numbers in ascending order.
Now place them in descending order.
What do you notice?

Order Numbers

Reasoning and Problem Solving

Whitney has six different numbers.	The first number could be anything between 215 and She put them in ascending order then accidentally spilt some ink onto her page. Two of her numbers are now covered in ink.
214,	
The second hidden number could be anywhere between 257 and 285	
Explain how you know.	288

True or False?

When ordering numbers you only need to look at the place value column with the highest value.

False.

For example, if you are ordering numbers in the hundreds you should start by looking at the hundreds column, but sometimes two numbers will have the same number of hundreds and so you will also need to look at other columns.

Count in 50s

Notes and Guidance

Children use their knowledge of the patterns in the 5 times table to count in steps of 50

They should start from any given multiple of 50 and be able to count both forwards and backwards.

Mathematical Talk

What is the same and what is different between counting in 5 s and counting in 50s?

	750	700	650			500			350

Hence, what is the connection between the 5 times table and the 50 times table?

Circle and explain the mistake in each sequence.
Can you notice a pattern as the numbers increase/decrease?

Varied Fluency

Look at the number patterns.
What do you notice?

5	10	15	20	25	30

50	100	150	200	250	300

\square Complete the number tracks.

50		150	200			350		450	

Can you correct the mistakes in each?

$$
50,100,105,200,250,300 \ldots
$$

Count in 50s

Reasoning and Problem Solving

$\left.\begin{array}{l|l|}\hline \text { Odd One Out } & \begin{array}{l}215 \text { is the odd one } \\ \text { out because it is } \\ \text { not a multiple of } \\ 50\end{array} \\ \text { If we were } \\ \text { counting up in 50s } \\ \text { from 100, it should } \\ \text { have been 250 } \\ \text { not 215 }\end{array}\right\}$

Always, Sometimes, Never

Sort the statements into always, sometimes or never.

- When counting in 50 s starting from
- Always
- There are only two digits in a
- Sometimes
multiple of 50
- Only the hundreds and tens column
- Sometimes

