## Autumn Scheme of Learning

## Year 1

## \#MathsEveryoneCan

 2020-21
## New for 2020/21

2020 will go down in history. The world has changed for all of us.

We want to do as much as we can to support children, teachers, parents and carers in these very uncertain times.

We have amended our schemes for 2020/21 to:
$\star$ highlight key teaching points
$\star$ recap essential content that children may have forgotten
$\star$ flag any content that you might not have covered during the school closures period.

We hope these changes will add further value to the schemes and save you time.


## Lesson-by-lesson overviews

We've always been reluctant to produce lesson-bylesson overviews as every class is individual and has different needs. However, many of you have said that if blended learning becomes a key feature of school life next year, a weekly plan with linked content and videos could be really useful.

As always, we've listened! We've now produced a complete lesson-by-lesson overview for Y1 to Y9 that schools can use or adapt as they choose. Each lesson will be linked to a free-to-use home learning video, and for premium subscribers, a worksheet. This means that you can easily assign work to your class, whether they are working at home or in school.

Inevitably, this lesson-by-lesson structure won't suit everyone, but if it works for you, then please do make use of this resource as much as you wish.


## Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of opportunities to build reasoning and problem solving elements into the curriculum.

For more guidance on teaching for mastery, visit the NCETM website:

## https://www.ncetm.org.uk/resources/47230

## Concrete - Pictorial - Abstract

We believe that all children, when introduced to a new concept, should have the opportunity to build competency by taking this approach.

Concrete - children should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial - alongside this children should use pictorial representations. These representations can then be used to help reason and solve problems.

Abstract - both concrete and pictorial representations should support children's understanding of abstract methods.

Need some CPD to develop this approach? Visit www.whiterosemaths.com for find a course right for you.

## Notes and Guidance

## Supporting resources

We have produced supporting resources for every small step from Year 1 to Year 11.

The worksheets are provided in three different formats:

- Write on worksheet - ideal for children to use the ready made models, images and stem sentences.
- Display version - great for schools who want to cut down on photocopying.
- PowerPoint version - one question per slide. Perfect for whole class teaching or mixing questions to make your own bespoke lesson.

For more information visit our online training and resources centre resources.whiterosemaths.com or email us directly at resources@whiterosemaths.com


## Notes and Guidance

## Meet the Characters

Children love to learn with characters and our team within the scheme will be sure to get them talking and reasoning about mathematical concepts and ideas. Who's your favourite?


|  | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 | Week 10 | Week 11 | Week 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number: Place Value (within 10) |  |  |  | Number: Addition and Subtraction (within 10) |  |  |  |  |  | Number: Place Value (within 20) |  |
| 은 |  | Numb | Addit btraction ithin 20 | n and | Number: Place Value (within 50) |  |  | Measu Leng He | ment: <br> and ht | Measurement: Weight and Volume |  |  |
|  |  | Number: Multiplication and Division |  |  | Number: <br> Fractions |  |  | Number: Place Value (within 100) |  |  | Measurement: Time |  |

## White <br> Autumn - Block 1 <br> R@se <br> Maths Place Value

## Overview

## Small Steps

## Notes for 2020/21

| Sort objects |
| :--- |
| Count objects |
| Represent objects |
| Count, read and write forwards from any number 0 to 10 |
| Count, read and write backwards from any number 0 to 10 |
| Count one more |
| Count one less |
| One-to-one correspondence to start to compare groups |
| Compare groups using language such as equal, more/greater, less/fewer |
| Introduce $<,>$ and $=$ symbols |
| Compare numbers |
| Order groups of objects |
| Order numbers |
| Ordinal numbers ( $1 \mathrm{~s}^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} \ldots$...) |
| The number line |

The importance of early number and early understanding of mathematics cannot be underestimated. With the learning of reception children being disrupted, we've decided to put a bit more time early in Year 1 on numbers to 10 , particularly around place value and the introduction to the concept of parts and wholes.

Devote more time to this block if needed before moving on and continue to revisit difficult concepts such as comparing numbers.

## Sort Objects

## Notes and Guidance

Children need to sort groups by characteristics before they count. Children should be encouraged to sort objects into groups in a variety of ways, for example, sorting a group of children into girls and boys or sorting counters by colour.

## Varied Fluency

Sort the fruit into groups and explain how you have sorted them.


Children should be encouraged to line sorted objects up to link to the early representations of bar models.

## Mathematical Talk

How many ways can you sort the children into groups?


How can you sort the objects?
Are there any different ways they could be sorted?
How have you grouped the objects?
How do you think these objects have been grouped?
$\Delta$


Can there be more than 2 groups?
How have these objects been grouped?
How else could you group them?

## Sort Objects

## Reasoning and Problem Solving



Both children could be correct as all of the cubes are green and all of the counters are yellow so it could have been sorted as either cubes and counters or green and yellow.


## Count Objects

## Notes and Guidance

Once objects are sorted, children begin to count from 1 to 10 to work out how many there are.
It is important that they count one object at a time and that they understand the last number they count is the total amount.
Children should be encouraged to place the objects in a line to improve accuracy when counting. They should also be exposed to what zero looks like.

## Mathematical Talk

Line up the objects. Is it easier to count now? Why?
What does one $\qquad$ represent?
What number will we say first when we are counting? Why?
How many are there in total?
When would we count 0 ?
What does zero look like?
Can you show me a group of zero?

## Varied Fluency

How many red cubes and how many green cubes are there?


There are $\qquad$ red cubes.

There are $\qquad$ green cubes.
There are $\qquad$ cubes altogether.

Match the numbers to the correct amount of teddies.


3
1
0
$\square$ Group the items, and then count how many there are in each group. Compare your groups with a partner's.

## Count Objects

## Reasoning and Problem Solving

Eva has grouped these cars into 3

groups. | Eva could have |
| :--- |
| grouped the cars |
| by colour e.g. Blue |
| cars, green cars |
| and red cars. |
| There would be |
| zero cars in the |
| red group. |



12

## Represent Objects

## Notes and Guidance

Children learn that one object can be represented by another. For example, one elephant can be represented by one cube or counter.
Children can also pictorially represent an object to aid understanding. The use of zero is important so children understand what zero means.
Although the use of numerals is modelled here, you could also introduce the written word too.

## Mathematical Talk

How can the five frame help you to count the objects?
Can you write the number 3 in words?
How many ways can you draw 3 ?
Do we always have to use counters to show an amount?
What can we use to represent the $\qquad$ ?
What does each $\qquad$ represent?
How many different ways can we represent $\qquad$ ?

## Varied Fluency

Using counters, show how many pineapples there are, then write the numerals for each.

$\square$ How many whales can you see on the wrapping paper?
Place counters on the whales to help you.
What else can you count?
Which animal is represented the most?
Which animal is represented the least?

$\square$ Complete the table.


## Represent Objects

## Reasoning and Problem Solving




## Count Forwards

## Notes and Guidance

Children develop counting to continue a number sequence forwards. Problems should be presented in a variety of ways e.g. numerals, words and images. Children should be able to find consecutive and non-consecutive missing numbers in sequences.
When counting a set of objects, children need to be able to visualise what zero looks like and know that this comes before one.

## Mathematical Talk

What can we use to represent the strawberries?
Do we always have to count from 0 or 1 ?
Can anything in our classroom help you with the words? (on a number line/working wall ensure words are matched with the numeral)
Are the numbers getting greater or smaller?
What is the next number?
$\qquad$ 1,2,3
3, 4, $\qquad$ 6

## Varied Fluency

Complete the number tracks.


Complete the number tracks.

| 1 |  | 3 | 4 | 5 | 6 |  | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| one |  | three | four | five | six |  | eight | nine | ten |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fill in the missing numbers.
$\qquad$ six, $\qquad$ nine

## Count Forwards

## Reasoning and Problem Solving



## Count Backwards

## Notes and Guidance

Children develop counting to continue a number sequence backwards. Problems should be presented in a variety of ways, e.g. numerals, words and images.

Children should continue sequences, and also find consecutive and non-consecutive missing numbers in sequences.

## Varied Fluency

Write the numerals to match the cubes.
Can you describe the pattern?
IIIIII.....

## Mathematical Talk

| 10 |  | 8 | 7 | 6 |  |  | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

How can we use our counting skills?
Do we always have to start at 10 when counting backwards?
Will all the boxes have dots in?

| ten | nine | eight |  | six |  | four | three | two |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Are the numbers getting greater or smaller?
What comes before $\qquad$ ?

Can you use the manipulatives and images to help you count?
Fill in the empty boxes.
$\qquad$


## Count Backwards

## Reasoning and Problem Solving

| Alex is counting. | Alex is counting <br> backwards <br> because the <br> numbers are do you know that Alex is counting <br> getting smaller. <br> backwards? |
| :--- | :--- |
| Children could <br> show this using <br> concrete <br> manipulatives. |  |


| How many different starting points could <br> you have if you wanted to count <br> backwards and stop at 3? | There are 7 <br> different <br> possibilities within <br> 10 |
| :--- | :--- |
|  | $10,9,8,7,6,5,4,3$ |
|  | $9,8,7,6,5,4,3$ |
|  | $8,7,6,5,4,3$ |
|  | $7,6,5,4,3$ |
|  | $6,5,4,3$ |
|  | $5,4,3$ |
|  | 4,3 |
|  |  |

## Count One More

## Notes and Guidance

Once children are confident placing numbers on a track, the language of one more can be introduced.
Children need to know that one more is the number after and they should use their counting skills or a number track to help them.
The use of a dice and dominoes should be used to reinforce subitising skills.

## Mathematical Talk

How can counting help us with finding 1 more?
Where can one more than $\qquad$ be found on a number track?

What does one more mean?
Will the number get greater or smaller? Why?

## Varied Fluency

D Complete each box using a picture, a numeral and a word.


Roll a dice, represent the number using counters on a track, and add 1 more. Then complete the sentences.


1 more than $\qquad$ is $\qquad$
$\qquad$ is one more than $\qquad$
$\square$ Choose a number card from 0 to 9 then complete the table.


## Count One More

## Reasoning and Problem Solving



## Count One Less

## Notes and Guidance

## Varied Fluency

Children should relate one less to one more and understand that it is the opposite.

It should be made clear that 1 less is the number before the starting number.

The use of dice and dominoes should be used to reinforce subitising skills.

## Mathematical Talk

How can counting help us with finding 1 less?
Where can 1 less than $\qquad$ be found on a number track?

What does one less mean?
Will the number get greater or smaller? Why?
Roll a dice, represent the number using counters on a track, and find 1 less. Then complete the sentences.


1 less than $\qquad$ is $\qquad$
$\qquad$ is one less than $\qquad$
$\square$ Choose a number card from 1 to 10 then complete the table.

| Number in <br> numerals | Number in words |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\square$ |  |  |  |  |  |  |  |  |  |
| Less than sentence |  |  |  |  |  |  |  |  |  |  |  |
| More than sentence |  |  |  |  |  |  |  |  |  |  |  |

## Count One Less

## Reasoning and Problem Solving

| True or False? | It is true because one more than 7 is |
| :---: | :---: |
| One more than 7 is the same as 1 less than 9 | Other example could be: 1 more |
| Use a number track to help you. | than 7 are the same. |
| Can you think of another statement like this? |  |


| Complete the sentence stems. | 8 |
| :---: | :---: |
|  | 8 |
|  | 7 |
| One less than 9 is ___ |  |
|  | The numbers are |
| One less than ___ is 7 | counting |
| One less than is 6 | backwards and children should |
|  | recognise that one |
|  | less than any |
| What pattern do you notice with the numbers? | number is the number before it |
|  | when counting. |
| What would the next sentence be? |  |
|  | The next sentence would be: |
|  | 'one less than 6 is |
|  | 5 ) |

## One-to-One Correspondence

## Notes and Guidance

Children match one object with another. Children should be exposed to situations where there are too many, not enough or just the right amount.

Children do not need to know the exact difference between the groups.

## Varied Fluency

Are there enough bowls for the bears? Draw lines to check.


## Mathematical Talk

How can we show we've matched the objects/images?
What does match mean?
What can we use to represent the sweets, to show each person has one each?

Are there enough objects/images to match them all up?
Are there any left over? Why has that happened?


- Six children are going to the beach.

Are there enough caps for everyone?


If not, how many more caps are needed?

## One-to-One Correspondence

## Reasoning and Problem Solving

There are four children going to the
beach.
Can every child have a bucket and
spade?
No, there are
enough buckets
for one each but
not enough
spades.


There are 5 horses, so the box with 5 carrots in matches the horses.


## Compare Objects

## Notes and Guidance

## Varied Fluency

Children use the language 'equal to', 'more', 'less', 'greater than', 'fewer' and 'less than' to compare groups of objects.

Children do not need to know the difference between the groups, just that one group is greater or less than another or that the groups are equal to each other.

## Mathematical Talk

Can you compare the same objects using the word 'fewer' and then using the word 'more'?
Is there more than one answer?
How many answers can you find?
What do you notice about the numbers or amounts that are less than/fewer?
How can you tell which has the least/most?
What does 'more/greater than' mean?
What does 'less/fewer than' mean?

$\square$ Use greater than, less than or equal to, to complete the


Draw counters in the bqxias rebrofleetsthe sphtanfes counters


What does 'is equal to' mean?

## Compare Objects

## Reasoning and Problem Solving

Move three counters so that all the ten frames show the same amount.


Create your own problem like this.


Whitney has this many cubes in one hand.


She has fewer cubes in the other hand.
How many cubes could she have in her other hand?

She could have:
4 cubes
3 cubes
2 cubes
1 cube
0 cubes.

## Introduce $<,>$ and $=$

## Notes and Guidance

Inequality symbols are not introduced in the National Curriculum until Year 2. However, it is a good opportunity to introduce them when working with smaller numbers and concrete materials.
For example:


## Mathematical Talk

Which symbol shows 'greater than'?
Which symbol shows 'less than'?
Which symbol shows 'is equal to'?
Is $\qquad$ greater than, less than or equal to $\qquad$ ?

How can we show that using words?
What can we use to represent the seven, to help us compare the two amounts?

## Varied Fluency

Draw the symbols around the cubes to show greater than, equal to or less than.


Use cubes to show that,

$$
\begin{aligned}
& 3<4 \\
& 6>2 \\
& 5=5
\end{aligned}
$$

Use $<,>$ or $=$ in each circle to make the statement correct.



Seven

## Introduce $<,>$ and $=$

## Reasoning and Problem Solving

| Circle all the numbers from the track that <br> cannot go in the box. Explain why. |
| :--- |
| 1 2 3 4 5 6 7 8 |

## Game

- Both children make a fist.
- On 3, show some fingers.
- Use <, > or = to compare.


This game can be extended to develop fluency. To extend:

- Can we move places to change the sign?
- How can we change fingers to use the '='sign?
- Can we use two hands each?


## Compare Numbers

## Notes and Guidance

## Varied Fluency

Children use previous learning to choose an efficient method to compare numbers. They will use their understanding of a number's value to compare them.
Children may draw on prior knowledge such as counting, sorting, grouping etc. to help them compare.
Children should be given access to a variety of concrete resources and images to support them.

## Mathematical Talk

What happens to the sign when you swap the numbers
around?
Will zero always be the smallest?
What strategies did you use?
Which number is the largest? How do you know?
Which number is the smallest? How do you know?
Which symbol represents $\qquad$ ?
How can you describe these two numbers?
Here are two number cards.


4

Use resources to make these numbers. Which is greater? Can you use a number track to check your answer?

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Use $<,>$ or $=$ to make the statements correct.

$\square$ Choose your own numbers to complete the statements.
$\qquad$ $<$ $\qquad$
$\qquad$ $>$ $\qquad$
$\qquad$ $=$ $\qquad$

## Compare Numbers

## Reasoning and Problem Solving

| One of these statements is incorrect. Use cubes to prove which one. $\begin{gathered} 8>4 \\ 7<10 \\ 3>6 \end{gathered}$ | $3>6$ is incorrect. |
| :---: | :---: |
| Using number cards $0-10$, how many ways can you make the statement correct? | Numerous answers. Check if children are working at random or working systematically. |

Children should roll two dice and fill in their total in blank boxes. They should then choose the correct inequality symbol to compare their numbers.


## Order Objects

## Notes and Guidance

Children should order three groups of objects. They should be exposed to different methods for comparing such as comparing two groups initially, and lining groups up.

Children should be introduced to the vocabulary 'greatest' and 'smallest' and begin to use it correctly.

## Mathematical Talk

How did you compare the piles or groups?
How do you know group $\qquad$ is the greatest?

How do you know group $\qquad$ is the smallest?

Group $\qquad$ has the greatest amount of $\qquad$
Group $\qquad$ has the smallest amount of $\qquad$

## Varied Fluency

Grab a small handful of counters and put them in three piles.
Order the piles from greatest to smallest.
$\square$ Order the groups of cars from greatest to smallest.


Complete the statements.

___ ice creams

ice creams

The smallest amount of ice creams is $\qquad$
The greatest amount of ice creams is $\qquad$

## Order Objects

## Reasoning and Problem Solving



Jack has 6 sunflowers.
Rosie has more sunflowers than Jack. Amir has more sunflowers than Rosie.

Who has the least amount of sunflowers?

Draw counters on the ten frames so that they are ordered from greatest to smallest.
How many ways can you find?

Greatest


Smallest

Jack has the least
amount of
sunflowers.

There are various solutions. Children could even add to the first ten frame which give even more combinations.

## Order Numbers

## Notes and Guidance

Children order numbers from smallest to greatest or greatest to smallest. Children should use concrete and pictorial representations to prove or check their answers.

Children use the vocabulary 'smallest' and 'greatest' and may also use the < or > symbols to show the order of their numbers.

## Varied Fluency

Order the dominoes from smallest to greatest.


Complete the sentences:

- The greatest number is $\qquad$ -
- ____ is the smallest number.


## Mathematical Talk

Explain how you ordered the dominoes.
Can you use the inequality symbols to compare/order numbers?
How many answers are there? Can you prove it with cubes?
Which is/has the greatest? How do you know?
Which is/has the smallest? How do you know?
How are you going to order the amounts?
How have these objects/numbers been ordered? How do you know?

- ____ is the greatest number.
- ____ is the smallest number.
- ___ is greater than $\qquad$
- $\qquad$ is smaller than $\qquad$
Use $<$ or $>$ to make the statement correct.


8


## Order Numbers

## Reasoning and Problem Solving

| Use 10 cubes. | Possible answers: |
| :--- | :--- |
| Place them into 3 piles. | $7,2,1$ |
| Order the piles from greatest to smallest. | $5,3,1$ |
| How many different ways can you find? | Etc. |
|  |  |
|  |  |



## Ordinal Numbers

## Notes and Guidance

This is a non-statutory statement in the Year 1 curriculum. It has been included to see numbers as positional. It also links to previous lessons such as ordering numbers.

Stem sentences support children with using new mathematical language correctly.

## Mathematical Talk

When would I use 'last' place? Explain how you know.
How can you work out where $\qquad$ is?
When might we use ordinal numbers?
What does first mean?
Which is the first cube in the tower?
What does last mean?
Where is the last cube in the tower?
Is there always a first and last? Why?
Is there always a $4^{\text {th }}$ ? Why?

## Varied Fluency

Create a tower using different coloured cubes.
Describe the order of the colours using 'first', 'second' 'third' and 'last' etc.
Can you give your partner accurate instructions so that they can create the same tower?
$\square$ Colour the $7^{\text {th }}$ flower blue. Start counting from the left.


Colour in another flower and complete the sentence.
The $\qquad$ flower is $\qquad$ .

Three children have a race.

Alex finishes first.
Amir finishes third.
What position does Whitney finish in?

## Ordinal Numbers

## Reasoning and Problem Solving

| Two children have used the instructions |  |
| :--- | :--- |
| to make a pattern. | They could both <br> be correct because <br> The instructions are four shapes. <br> aren't clear, it <br> doesn't state which <br> order the middle <br> two shapes need <br> To be in. |
| The last is a square. |  |
| The other two shapes are a |  |
| triangle and a rectangle. |  |

Here are their patterns.
Amir
Who is correct?

| Tommy, Teddy and Alex take part in a <br> race. | Tommy finished <br> behind <br> Teddy/Alex. |
| :--- | :--- | :--- |
| The results are: | Teddy finished in <br> front of |
| Alex/Tommy. |  |
| Teddy |  |

Fill in the blanks:
Tommy finished behind $\qquad$ .

Teddy finished in front of $\qquad$ .

Alex finished in front of $\qquad$ but behind $\qquad$ -

## The Number Line

## Notes and Guidance

Children will use a number line to practise and consolidate skills learnt so far. They should use the number line to:

- Count to 10
- See one more/one less
- See greater than/less than statements
- Order numbers

Using a number line gives children the opportunity to count from zero.

## Mathematical Talk

Can you label the number line?
How do you know where to put the numbers?
How are numbers presented on a number line?
What does each mark on the number line represent?
Where does the number line start?
How did you choose where to put them?
Where does the number line end?
Do we have to start counting from 0 every time?
Which way will we 'jump' when we find one more/less?

## Varied Fluency

On the number line,

- Circle the number 7
- Underline a number greater than 7
- Draw an arrow to the number that is one less than 5
- Put a box around the smallest number.


How many jumps from zero is eight?


Is this more or less than the number of jumps to nine?
$\square$ Write 5,9 and 2 in the correct order on the number line.


## The Number Line

## Reasoning and Problem Solving

## Game

Roll a die.

Place a counter on the number line covering the number shown by the die.

Work out how many jumps to 0 and how many to 10
Which is closer?
If you rolled a 6 and did three jumps, what numbers could you land on?

Can you roll a number where there are 7 and 3 jumps to 10 or 0 ? Which numbers could they be?

Open ended. For example, if they roll a 4 , they are 6 jumps from 10 and 4 from 0 , so they are closer to 0

3 or 9 depending which way they jumped.

Children might work out this could be 3 or 7 , but because there isn't a 7 on a dice it must be 3

Mo points to a number on the number line.


Which of these could not represent this number?


The cubes couldn't because there are only six of them and Mo has pointed to seven. The number piece and ten frame both show seven.

